I M.Tech - I Semester - Regular Examinations - February 2018

ADVANCED MECHANICS OF SOLIDS

(MACHINE DESIGN)
Duration: 3 hours
Max. Marks: 60
Answer the following questions.

1. Determine the principal stresses and their axes for the state of stress characterized by the following stress matrix.

15 M

$$
\sigma_{i j}=\left[\begin{array}{ccc}
18 & 0 & 24 \\
0 & -50 & 0 \\
24 & 0 & 32
\end{array}\right]
$$

OR

2. a) Explain Principal Strain Yield Criterion. State its drawbacks.

7 M
b) Explain Von-mises yield criterion with relevant equations.
3. Locate the shear center for the beam cross section shown in Figure-1. The walls of the cross section have constant thickness, $\mathrm{t}=2.00 \mathrm{~mm}$.

Figure-1

OR

4. A cantilever beam of rectangular section is subjected to a load of 1000 N , which is inclined at an angle of 30° to the vertical. What is the stress due to bending at point D (Figure-2) near the built-in-end?

Figure- 2
5. The curved beam in Figure-3 has a circular cross section 50 mm in diameter. The inside diameter of the curved beam is 40 mm . Determine the stress at B and C for $\mathrm{P}=20 \mathrm{kN}$.

15 M

Figure-3
OR
6. Derive the equation for the circumferential stress acting on a rotating disk of uniform thickness with a hole in the middle.
7. Figure- 4 shows a two-cell tubular section whose wall thicknesses are as shown. If the member is subjected to a
torque T , determine the shear flows and the angle of twist of the member per unit length.

Figure-4
OR
8. The cantilever beam in Figure 5 has a rectangular cross section and is subjected to equal loads P at the free end and at the center as shown. Determine the deflection of the free end of the beam using Castigliano's theorem.

Figure-5

